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In this note we wish to outline & group-theoretical method O |z %(\
\ . v o E :;%
of obtaining internal symmetries of elementary particles from the » O~ 3%\3 P
1) BN {\)}
geometry of space-time. The basis of our theory is the group T I ‘.8 L | \
) 0
. 0 @
having as the generators of its Lie algebra T the identity, momentum, t‘s 3 <
’ <
and position operators I, P“, and X“, =0, 1, 2, 3, satisfying 2) = ﬁ
[Pu, X ] = g, I (8=c=1),
[PH, )= [xp, X)) = [Pu, I]= (%, 1]=0,
<gHV) = diag (1, -1, -1, -1) .

These equations represent the simplest covariant generalization of the

non~relativistic canonical commutation relations [Pi’ qj] = -ibij. Irredu-
cible unitary representations of T are labeled by the eigenvalue o
(restricted to be > O for physical reasons) of I; for the maximal
abelian subalgebra of 7 we choose the four PM'3 ) The basic states are
thus |op>>, to be physically interpreted as the momentum eigenstates
of matter in which all spin, isospin, etc., dependence is "washed out”
or ignored. We aim to show how these additional quantum numbers can

be regenerated by starting with the basic states only.

*This paper represents the results of one phase of research carried

out by the Jet Propulsion Iaboratory, California Institute of TechnomLy, —%
under Contract NAST-100, sponsored by the National Aeronautics and

Space Administration.
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The allowed operations on the states are the usuzsl ones in

quantum mechanics: superposition, or formation of linear combinations

of steates with complexicoefficients, and.composition, or formatioﬁ of
tensor product states. Every "physical" state is to be obtained by
a repeated application of these two operations to our basic states.
The new states so obtained, 1f they are chosen to be the eigenstates
of momentum, mgy again be regarded as the basic states if one sup-
presses thelr newly generated quantum numbers.

By passing to the enveloping algebra of 9’, we may introduce
the angular momentum operators Mu

= X[“PVJ/I = (XHPV - XVP“)/I =1L .

v LV

One finds the usual commutation relations between the operators
P X, and M, namely, [M“V, pl=1p 8, [Mpv, Mgl = M8
etc. Thus Mpv’ if adjoined to 9, yields a new Lie algebra which is
the Lie algebra of what we call the sugmented Poincare group P. 4)
The total angular momentum M is equal to the orbital part L; this is
true only for this simple case of the basic representations of T.

To illustrate the state-building process to the lowest order
of complexity, let us consider the tensor product states !clpi><8lcgp2:>
diagonalizing the operators I(i) and P“(i), i =1, 2, of the Lie algebra
(1) ® 7(2). Define the external Lie algebra zxt (isomorphic to J7)
by exhibiting its basis elements: I = I(l) + I(2), P“ = Pp(l) +
PH(E), x“ = X“(l) + xp(z). The total angular momentum of this "two-
particle system" is by definition just the sum of the individual angular

momenta.:

= -+ = +
M“V Muv(l) M“v(e) th spV s
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I=1I(1) 1(2) >0 ,

?L = [P“(l) 1(2) - P (2) ()] 1=,

and similarly for XQ.S) The operators I, ﬁ;’ and i; form the internal
Lie algebra ET;nt isomorphic and orthogonal.to :j;xt’ i.e., (4, B]=0
for all A in th’ B in Tint' We may now diagonalize I, Pu’ I, and
f; and so obtain the states [0 p; 0 P > characterized by exterral and
internal quantum numbers (relative to the group T). Equation (1) shows
that we no longer have M = L . The spin part S of the total

uv uv [URY
angular momentum arises as a consequence of the existence of the

internal operators ?L and i;. The (intrinsic) spin tensor operator

Suv is related to the usual particle spin through the equations W° =

% s(s + 1) and W = L € SVQPU.6) S . obviously commutes with I,
" 2 Tuvpo [TRY,

Pu, and X“ and hence with Ihv’ as it should. Instead of the states

| o ps 515':>, one could, e.g., take |c p s ss; o f kK >, diagonalizing

I, P“, §2, Sa, f; E? —-E?, and a certain combination of the operators

P and X2. The various states so obtained are related to each other

by the Clebsch-Gordan coefficients appropriate to T or P. In any

case, 1t should now be clear how "complex" states may be generated

from the basic ones. If one reduces an n-fold tensor product of the

basic states, one obtains the states |0 p; 01Dy°** O

g D corres-
n—lpn—£>

ponding to one external and n-1 internal ILie algebras, all nutually

orthogonal and isomorphic to 3".7)
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We proceed now to show how to obtain internal symmetry groups

of particles with their traditionally "non-geometric” quantum numbers
such as isospin, hypercharge, etc. Consider the above reduced n-fold
n
=\ /
tensor product states. The total angular momentum Mﬁv ji:k=l M“V\k)
may again be decomposed into its orbital and spin parts. The spin

tensor S v now receives contributions from the n-l internal Lie
N

o _ — —
algebras; it is unique although its decomposition Spv = EZ: (x)P J(k)/I(k)

X
k=1 (u v
depends on the choice of internal Lie algebras. If Vu is any o the

internal four-vector operators, then it obviously commutes with I, Pp’

and X but not with M _: (M , V ])=(s ,V ]=1iv
B wt Dy T3 = (8, 7, ¢

« The onl
(u-vlp v

combinations of internal operators commuting with the generators of thei

external Lie aigebra of the augmented Poincaré group (and in particular
with the elements of the Poincaré group itself) are the I's and the
Iorentz scalars or invariants formed from the 2(n-1) internal four-
vectors. To construct all the invariants it is useful to intrcduce the
combinations

850 = (2, (0) £ 1 X (/2] (2T 2, k=1, 2,..., n - 1,
where £ (the fundamental length!) has the dimensions of length or

inverse mass and serves to make the A's dimensionless. Define

e = A1) AR = (D)7,
e = () AT = T (e )r

By convention the upper and lower indices respectively correspond to

N ) ) _
the A 's and A 's; thus, e.g., g5 = A“(i) A™™(3). We find the
following commutation relations:

ik ik ki

1§ ke _ _
[é > € ]‘ igij’ gk.ﬂ}—o ]
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The first equation in conjunction with (gé)* = gi shows that tize g; are
the generators of the unitary group Uh.g Ui X SUh. The remaining egque-

tions reveal that Uh is a subgroup of a larger internal symmetry group
which is easily identified as the symplectic group Cn8). No higher
internal symmetry group exists for this case of n-fold tensor product
states because the only other possible internal invarianté are of the
form e"VPC Ai(i) Ai(j)_Ai(k) Ai(z), and they fail to form & finite-
dimensional Lie algebra. For fixed n, one may label the states by tae
quantum numbers associlated with Uy and the sequence of compact groups
SUz < SUs & *+- CLSUh.9) Which subgroup SUs of SUh should be identified
with the physical isospin group can only be decided once a definite
choice of internal Lie algebras is made and dynamical questions investi-
gated. The fact that the SUk are subgroups of Cn means that symmetry
schemes based on any of them canﬁot be exact but are necessarily broken
in a definite manner.

Further development of our theory, including its detailed physical
interpretation and predictions; dynamical calculations; relations be-
tween internal and external gquantum numbers, ete., will be presented
in a conmprehensive paper now being prepared.

I wish to acknowledge the encouragement and the stimulation
received from the members of the theoretical’' physics group of this

Iaboratory, especially from Drs. P. Burt and M. M. Saffren.
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FOOTNOTES

The motivation for introducing T and the detailed discussion of
it will be given elsewhere (J. S. Zmuidzinas, to be published).
We merely quote the following 6 x 6 matrix realization of this

group: T is the set of all matrices of the form

where v = (v9, -v', -v2, «v®), a real, I, = L x b unit matrix,

2, as), under the usual matrix multiplication.

and a = col(a®, a', a
The physical interpretation of these operators is the following.
The P“ are the usual momentﬁm operators or generators of space-
time translations. The position opersators X“ generate trans-
lations in the momentum space; they are in a sense the generators
of dynamics, as one can easily convince himself if he thinks of
their effect in mixing masses. The identity operator I is the
generator of phases of quantum mechanical states [cf. the case

of the Galilel group: Jean-Marc Ievy-Ieblond, Jour. Math.

Phys. 4, 776 (1963)].

This choice 1s obviously neither unique nor necessary; however,
it is convenient for physical interpretation. Another convenient
choice is that of the four XH' In'fact, the whole theory is
invariant under.Pu *Q-XH y L =— —I.

The group of invariant automorphisms of the Lie algebra (with the

identity element I) of the restricted Poincare group Pl is very
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closely related to the augmented Poincard group P whose group
law 1is
(@', v', a', '), v, a, £)

= (@' +a+v'-gta, vi+4'v,a +4"a, £'2);
T and P: are of course subgroups of P. We believe that the aug-
mented Poincare group is of fundamental significance in elementary
particle physics.
All barred operators will henceforth be identified as internal.
The intrinsic spin operators SLw = (§, g) form a Lie algebra.which
is that of the (proper homogeneous) Lorentz group; its irreducible
unitary representations are characterized by the values of its two
invariants —'% SWS“lv =f =1+ —k® and % euvpaS“VSpc'= g = 2kv,
wherev takes a continuous range of values and k = 0, 1/2, 1, 3/2,...
The eigenvalues of.§2 =s(s+1), s=k, k+1, ..., represent thé
spin of a particle defined in its rest frame. The occurrence of
half-integral spins should not be mysterious if one remembers that
SHv is defined in terms of internal variables and that there is
ne reason to insist on the single-valuedness of any function of
these unobservable variables.
The reduction process is clearly not unique: there are many possible
sets of n-1 mutually orthogonal internal Lie algebras. The interest-
ing possibility of choosing hierarchies of internal Iie algebras
with progressively diminishing commutators [fﬁ X ] will be discussed
elsewhere. The existence of such hierarchies allows us to approxi-
mate states by neglecting higher order internal gquantum numbers
and thus a posteriori justifies our initial consideration of the

basic states |o P> .
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It is important to note that the group generated by the ¢'s,
although isomorphic to the complex group Cn’ is not compact.
This i1s most easily seen by examininé C1 which is contained in
every C : the hermitian operators K; = (2 + g0/ Ko =
i(gll - §11)/41 and Kg = gi/E generate the Lie algebra of the
non-compact 3I-dimensional Lorentz group.

A discussion of such hierarchy of uniteary groups has recently
been given by Neville [D. E. Neville, Phys. Rev. Iettersl3,
118 (1964)]. See also C. R. Hagen and A. J. Macfarlane,

Phys. Rev. 135, B43k (196k); and F. Gursey and L. A. Radicati,

Phys. Rev. Lettersl13, 173 (1964).



